Well-supported LLMs

The following models are currently well-supported for fine-tuning.

Large Language Models (Text)

You may fine-tune LoRA, Turbo LoRA, and Turbo adapters on any of these base LLMs, but note that for Turbo LoRA and Turbo adapters, some models may require additional deployment configurations.

Qwen Models

Model NameParametersContext WindowSupported Fine-Tuning Context WindowAdapter Pre-load Not RequiredSupports GRPOArchitectureLicense
qwen3-30b-a3b30.5 billion13107232768QwenTongyi Qianwen
qwen3-32b32.8 billion13107232768QwenTongyi Qianwen
qwen3-14b14.8 billion13107232768QwenTongyi Qianwen
qwen3-8b8.19 billion13107232768QwenTongyi Qianwen
qwen2-5-32b32.8 billion13107216384QwenTongyi Qianwen
qwen2-5-32b-instruct32.8 billion3276816384QwenTongyi Qianwen
qwen2-5-14b14.8 billion13107232768QwenTongyi Qianwen
qwen2-5-14b-instruct14.8 billion3276832768QwenTongyi Qianwen
qwen2-5-7b7.62 billion13107232768QwenTongyi Qianwen
qwen2-5-7b-instruct7.62 billion3276832768QwenTongyi Qianwen
qwen2-5-3b3.09 billion13107232768QwenTongyi Qianwen
qwen2-5-3b-instruct3.09 billion3276832768QwenTongyi Qianwen
qwen2-5-1-5b1.54 billion13107232768QwenTongyi Qianwen
qwen2-5-1-5b-instruct1.54 billion3276832768QwenTongyi Qianwen
qwen2-5-coder-32b-instruct32.8 billion13107216384QwenTongyi Qianwen
qwen2-5-coder-7b-instruct7.62 billion13107216384QwenTongyi Qianwen
qwen2-5-coder-3b-instruct3.09 billion13107216384QwenTongyi Qianwen
qwen2-7b7.62 billion13107232768QwenTongyi Qianwen
qwen2-1-5b-instruct1.54 billion13107232768QwenTongyi Qianwen
qwen2-1-5b1.54 billion13107232768QwenTongyi Qianwen

Llama 3 Models

Model NameParametersContext WindowSupported Fine-Tuning Context WindowAdapter Pre-load Not RequiredSupports GRPOArchitectureLicense
llama-3-3-70b70.6 billion1310728192Llama-3Meta (request for commercial use)
llama-3-2-3b3.21 billion3276832768Llama-3Meta (request for commercial use)
llama-3-2-3b-instruct3.21 billion3276832768Llama-3Meta (request for commercial use)
llama-3-2-1b1.24 billion3276832768Llama-3Meta (request for commercial use)
llama-3-2-1b-instruct1.24 billion3276832768Llama-3Meta (request for commercial use)
llama-3-1-8b8 billion6299932768Llama-3Meta (request for commercial use)
llama-3-1-8b-instruct8 billion6299932768Llama-3Meta (request for commercial use)
llama-3-70b70 billion81928192Llama-3Meta (request for commercial use)
llama-3-70b-instruct70 billion81928192Llama-3Meta (request for commercial use)
llama-3-8b8 billion81928192Llama-3Meta (request for commercial use)
llama-3-8b-instruct8 billion81928192Llama-3Meta (request for commercial use)

Llama 2 Models

Model NameParametersContext WindowSupported Fine-Tuning Context WindowAdapter Pre-load Not RequiredSupports GRPOArchitectureLicense
llama-2-70b70 billion40964096Llama-2Meta (request for commercial use)
llama-2-70b-chat70 billion40964096Llama-2Meta (request for commercial use)
llama-2-13b13 billion40964096Llama-2Meta (request for commercial use)
llama-2-13b-chat13 billion40964096Llama-2Meta (request for commercial use)
llama-2-7b7 billion40964096Llama-2Meta (request for commercial use)
llama-2-7b-chat7 billion40964096Llama-2Meta (request for commercial use)

CodeLlama Models

Model NameParametersContext WindowSupported Fine-Tuning Context WindowAdapter Pre-load Not RequiredSupports GRPOArchitectureLicense
codellama-70b-instruct70 billion40964096Llama-2Meta (request for commercial use)
codellama-13b-instruct13 billion1638416384Llama-2Meta (request for commercial use)
codellama-7b7 billion40964096Llama-2Meta (request for commercial use)
codellama-7b-instruct7 billion40964096Llama-2Meta (request for commercial use)

Mistral Models

Model NameParametersContext WindowSupported Fine-Tuning Context WindowAdapter Pre-load Not RequiredSupports GRPOArchitectureLicense
mistral-7b-instruct-v0-37 billion3276832768MistralApache 2.0
mistral-7b-instruct-v0-27 billion3276832768MistralApache 2.0
mistral-7b7 billion3276832768MistralApache 2.0
mistral-7b-instruct7 billion3276832768MistralApache 2.0
mistral-nemo-12b-240712 billion13107232768MistralApache 2.0
mistral-nemo-12b-instruct-240712 billion13107232768MistralApache 2.0
zephyr-7b-beta7 billion3276832768MistralMIT
mixtral-8x7b-instruct-v0-146.7 billion327687168MixtralApache 2.0

Solar Models

Model NameParametersContext WindowSupported Fine-Tuning Context WindowAdapter Pre-load Not RequiredSupports GRPOArchitectureLicense
solar-1-mini-chat-24061210.7 billion3276832768LlamaCustom License
solar-pro-preview-instruct-v222.1 billion40964096SolarCustom License
solar-pro-24112622.1 billion3276816384SolarCustom License

Gemma Models

Model NameParametersContext WindowSupported Fine-Tuning Context WindowAdapter Pre-load Not RequiredSupports GRPOArchitectureLicense
gemma-2-27b27.2 billion81924096GemmaGoogle
gemma-2-27b-instruct27.2 billion81924096GemmaGoogle
gemma-2-9b9.24 billion81928192GemmaGoogle
gemma-2-9b-instruct9.24 billion81928192GemmaGoogle
gemma-7b8.5 billion81928192GemmaGoogle
gemma-7b-instruct8.5 billion81928192GemmaGoogle
gemma-2b2.5 billion81928192GemmaGoogle
gemma-2b-instruct2.5 billion81928192GemmaGoogle

Phi Models

Model NameParametersContext WindowSupported Fine-Tuning Context WindowAdapter Pre-load Not RequiredSupports GRPOArchitectureLicense
phi-3-5-mini-instruct3.8 billion13107216384Phi-3Microsoft
phi-3-mini-4k-instruct3.8 billion40964096Turbo LoRA not supportedPhi-3Microsoft
phi-22.7 billion20482048Turbo not supportedPhi-2Microsoft

Other Models

Model NameParametersContext WindowSupported Fine-Tuning Context WindowAdapter Pre-load Not RequiredSupports GRPOArchitectureLicense
deepseek-r1-distill-qwen-32b32.8 billion1310728000QwenDeepSeek-AI
openhands-lm-32b-v0.132.8 billion13107216384QwenXingyao Wang

Many of the latest OSS models are released in two variants:

  • Base model (llama-2-7b, etc): These are models that are primarily trained on the objective of text completion.
  • Instruction-Tuned (llama-2-7b-chat, mistral-7b-instruct, etc): These are models that have been further trained on (instruction, output) pairs in order to better respond to human instruction-styled inputs. The instructions effectively constrains the model’s output to align with the response characteristics or domain knowledge.

Vision Language Models

Currently, we support fine-tuning LoRAs for the following vision language models:

Llama 3 Vision (Mllama)

Model NameParametersArchitectureLicenseLoRATurbo LoRATurboContext WindowSupported Fine-Tuning Context WindowSupports GRPO
llama-3-2-11b-vision10.7 billionMllamaMeta (request for commercial use)13107232768
llama-3-2-11b-vision-instruct10.7 billionMllamaMeta (request for commercial use)13107232768

Qwen VL

Coming Soon!

To get started with VLM fine-tuning, check out this user-guide here on how to format your data for training and test inference.

Best-Effort LLMs (via HuggingFace)

Best-effort support for fine-tuning is also offered for any Huggingface LLM meeting the following criteria:

  • Has the “Text Generation” and “Transformer” tags
  • Does not have a “custom_code” tag
  • Are not post-quantized (ex. model containing a quantization method such as “AWQ” in the name)
  • Has text inputs and outputs

Fine-tuning a custom LLM

  1. Get the Huggingface ID for your model by clicking the copy icon on the base model’s Huggingface page, ex. BioMistral/BioMistral-7B.
  2. Pass the Huggingface ID as the base_model.
from predibase import Predibase, SFTConfig
pb = Predibase(api_token=<API_TOKEN>)

# Create an adapter repository
repo = pb.repos.create(name="bio-summarizer", description="Bio News Summarizer", exists_ok=True)

# Start a fine-tuning job, blocks until training is finished
adapter = pb.adapters.create(
    config=SFTConfig(
        base_model="BioMistral/BioMistral-7B"
    ),
    dataset="bio-dataset",
    repo=repo,
    description="initial model with defaults"
)

Predibase training metrics will be automatically streamed to stdout. To view additional metrics via Tensorboard, pass show_tensorboard=True to the create call:

from predibase import SFTConfig

adapter = pb.adapters.create(
    config=SFTConfig(
        base_model="BioMistral/BioMistral-7B"
    ),
    dataset="bio-dataset",
    repo=repo,
    description="initial model with defaults",
    show_tensorboard=True
)

Note that tensorboard data may take some time to refresh. Predibase also supports integrations with Weights & Biases and Comet.

Note that if you fine-tune a custom model not on our shared deployments list, you’ll need to deploy the custom base model as a private serverless deployment in order to run inference on your newly trained adapter. This is also supported on a best-effort basis.